3.78 \(\int \sqrt{\sinh ^{-1}(a x)} \, dx\)

Optimal. Leaf size=53 \[ \frac{\sqrt{\pi } \text{Erf}\left (\sqrt{\sinh ^{-1}(a x)}\right )}{4 a}-\frac{\sqrt{\pi } \text{Erfi}\left (\sqrt{\sinh ^{-1}(a x)}\right )}{4 a}+x \sqrt{\sinh ^{-1}(a x)} \]

[Out]

x*Sqrt[ArcSinh[a*x]] + (Sqrt[Pi]*Erf[Sqrt[ArcSinh[a*x]]])/(4*a) - (Sqrt[Pi]*Erfi[Sqrt[ArcSinh[a*x]]])/(4*a)

________________________________________________________________________________________

Rubi [A]  time = 0.107191, antiderivative size = 53, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 8, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.75, Rules used = {5653, 5779, 3308, 2180, 2204, 2205} \[ \frac{\sqrt{\pi } \text{Erf}\left (\sqrt{\sinh ^{-1}(a x)}\right )}{4 a}-\frac{\sqrt{\pi } \text{Erfi}\left (\sqrt{\sinh ^{-1}(a x)}\right )}{4 a}+x \sqrt{\sinh ^{-1}(a x)} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[ArcSinh[a*x]],x]

[Out]

x*Sqrt[ArcSinh[a*x]] + (Sqrt[Pi]*Erf[Sqrt[ArcSinh[a*x]]])/(4*a) - (Sqrt[Pi]*Erfi[Sqrt[ArcSinh[a*x]]])/(4*a)

Rule 5653

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int \sqrt{\sinh ^{-1}(a x)} \, dx &=x \sqrt{\sinh ^{-1}(a x)}-\frac{1}{2} a \int \frac{x}{\sqrt{1+a^2 x^2} \sqrt{\sinh ^{-1}(a x)}} \, dx\\ &=x \sqrt{\sinh ^{-1}(a x)}-\frac{\operatorname{Subst}\left (\int \frac{\sinh (x)}{\sqrt{x}} \, dx,x,\sinh ^{-1}(a x)\right )}{2 a}\\ &=x \sqrt{\sinh ^{-1}(a x)}+\frac{\operatorname{Subst}\left (\int \frac{e^{-x}}{\sqrt{x}} \, dx,x,\sinh ^{-1}(a x)\right )}{4 a}-\frac{\operatorname{Subst}\left (\int \frac{e^x}{\sqrt{x}} \, dx,x,\sinh ^{-1}(a x)\right )}{4 a}\\ &=x \sqrt{\sinh ^{-1}(a x)}+\frac{\operatorname{Subst}\left (\int e^{-x^2} \, dx,x,\sqrt{\sinh ^{-1}(a x)}\right )}{2 a}-\frac{\operatorname{Subst}\left (\int e^{x^2} \, dx,x,\sqrt{\sinh ^{-1}(a x)}\right )}{2 a}\\ &=x \sqrt{\sinh ^{-1}(a x)}+\frac{\sqrt{\pi } \text{erf}\left (\sqrt{\sinh ^{-1}(a x)}\right )}{4 a}-\frac{\sqrt{\pi } \text{erfi}\left (\sqrt{\sinh ^{-1}(a x)}\right )}{4 a}\\ \end{align*}

Mathematica [A]  time = 0.0467143, size = 45, normalized size = 0.85 \[ -\frac{\frac{\sqrt{-\sinh ^{-1}(a x)} \text{Gamma}\left (\frac{3}{2},-\sinh ^{-1}(a x)\right )}{\sqrt{\sinh ^{-1}(a x)}}+\text{Gamma}\left (\frac{3}{2},\sinh ^{-1}(a x)\right )}{2 a} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[ArcSinh[a*x]],x]

[Out]

-((Sqrt[-ArcSinh[a*x]]*Gamma[3/2, -ArcSinh[a*x]])/Sqrt[ArcSinh[a*x]] + Gamma[3/2, ArcSinh[a*x]])/(2*a)

________________________________________________________________________________________

Maple [A]  time = 0.068, size = 42, normalized size = 0.8 \begin{align*}{\frac{1}{4\,\sqrt{\pi }a} \left ( 4\,\sqrt{{\it Arcsinh} \left ( ax \right ) }\sqrt{\pi }xa+\pi \,{\it Erf} \left ( \sqrt{{\it Arcsinh} \left ( ax \right ) } \right ) -\pi \,{\it erfi} \left ( \sqrt{{\it Arcsinh} \left ( ax \right ) } \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arcsinh(a*x)^(1/2),x)

[Out]

1/4*(4*arcsinh(a*x)^(1/2)*Pi^(1/2)*x*a+Pi*erf(arcsinh(a*x)^(1/2))-Pi*erfi(arcsinh(a*x)^(1/2)))/Pi^(1/2)/a

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\operatorname{arsinh}\left (a x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(arcsinh(a*x)), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a*x)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\operatorname{asinh}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(asinh(a*x)**(1/2),x)

[Out]

Integral(sqrt(asinh(a*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\operatorname{arsinh}\left (a x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(arcsinh(a*x)), x)